Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique N-Terminal Domain

نویسندگان

  • Andreas J. Stroehlein
  • Neil D. Young
  • Pasi K. Korhonen
  • Bill C. H. Chang
  • Paul W. Sternberg
  • Giuseppe La Rosa
  • Edoardo Pozio
  • Robin B. Gasser
چکیده

Parasitic worms of the genus Trichinella (phylum Nematoda; class Enoplea) represent a complex of at least twelve taxa that infect a range of different host animals, including humans, around the world. They are foodborne, intracellular nematodes, and their life cycles differ substantially from those of other nematodes. The recent characterization of the genomes and transcriptomes of all twelve recognized taxa of Trichinella now allows, for the first time, detailed studies of their molecular biology. In the present study, we defined, curated, and compared the protein kinase complements (kinomes) of Trichinella spiralis and T. pseudospiralis using an integrated bioinformatic workflow employing transcriptomic and genomic data sets. We examined how variation in the kinome might link to unique aspects of Trichinella morphology, biology, and evolution. Furthermore, we utilized in silico structural modeling to discover and characterize a novel, MOS-like kinase with an unusual, previously undescribed N-terminal domain. Taken together, the present findings provide a basis for comparative investigations of nematode kinomes, and might facilitate the identification of Enoplea-specific intervention and diagnostic targets. Importantly, the in silico modeling approach assessed here provides an exciting prospect of being able to identify and classify currently unknown (orphan) kinases, as a foundation for their subsequent structural and functional investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation

Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...

متن کامل

Molecular cloning of adenylate kinase from the human filarial parasite Onchocerca volvulus

Adenylate kinases (ADK) are ubiquitous enzymes that contribute to the homeostasis of adeninenucleotides in living cells. In this study, the cloning of a cDNA encoding an adenylate kinase from the filariaOnchocerca volvulus has been described. Using PCR technique, a 281 bp cDNA fragment encoding part ofan adenylate kinase was isolated from an O. volvulus cDNA library. Use of this fragment as a p...

متن کامل

Characteristics Determination of Rheb Gene and Protein in Raini Cashmere Goat

The aim of the present study was todeterminecharacteristics of Rheb gene and protein in Raini Cashmere goat. Comparative analyses of the nucleotide sequences were performed. Open reading frames (ORFs), theoretical molecular weights of deduced polypeptides, the protein isoelectric point, protein characteristics and three-dimensional structures was predicted using online standard softwares. The f...

متن کامل

Bioinformatic and empirical analysis of a gene encoding serine/threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars

Molecular structure of a gene, ZmSTPK1, encoding a serine/threonine protein kinase in maize was analyzed by bioinformatic tool and its expression pattern was studied under chemical biological fertilizers. Bioinformatic analysis cleared that ZmSTPK1 is located on chromosome 10, from position 141015332 to 141017582. The full genomic sequence of the gene is 2251 bp in length and includes 2 exons. ...

متن کامل

کلونینگ و بیان دومین انتهای آمینی فلاژلین پسودوموناس آئروژینوزا و ارزیابی آنتی‌بادی‌های تولید شده بر علیه آن در مهار حرکت پسودوموناس آئروژینوزا

Background and Objective: Pseudomonas aeruginosa is an opportunistic pathogen that causes severe and lethal infections in immunocompromised individuals. This bacterium possesses a single polar flagellum. Flagellum and its subunit Flagellin play important roles in the pathogenesis of P. aeruginosa. Flagellin induces immune responses by interaction of its N-terminal domain with TLR-5. Our main ai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016